Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 21486, 2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36509792

ABSTRACT

CoCrFeNi is a well-studied face centered cubic (fcc) high entropy alloy (HEA) that exhibits excellent ductility but only limited strength. The present study focusses on improving the strength-ductility balance of this HEA by addition of varying amounts of SiC using an arc melting route. Chromium present in the base HEA is found to result in decomposition of SiC during melting. Consequently, interaction of free carbon with chromium results in the in-situ formation of chromium carbide, while free silicon remains in solution in the base HEA and/or interacts with the constituent elements of the base HEA to form silicides. The changes in microstructural phases with increasing amount of SiC are found to follow the sequence: fcc → fcc + eutectic → fcc + chromium carbide platelets → fcc + chromium carbide platelets + silicides → fcc + chromium carbide platelets + silicides + graphite globules/flakes. In comparison to both conventional and high entropy alloys, the resulting composites were found to exhibit a very wide range of mechanical properties (yield strength from 277 MPa with more than 60% elongation to 2522 MPa with 6% elongation). Some of the developed high entropy composites showed an outstanding combination of mechanical properties (yield strength 1200 MPa with 37% elongation) and occupied previously unattainable regions in a yield strength versus elongation map. In addition to their significant elongation, the hardness and yield strength of the HEA composites are found to lie in the same range as those of bulk metallic glasses. It is therefore believed that development of high entropy composites can help in obtaining outstanding combinations of mechanical properties for advanced structural applications.

2.
Sci Rep ; 12(1): 9822, 2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35701495

ABSTRACT

High entropy alloys (HEAs) are a relatively new class of material that have shown the potential to exhibit excellent combinations of mechanical properties. Various microstructural modifications have been explored to further enhance their mechanical properties for use in demanding structural applications. The main focus of the present work is an investigation of the effect of adding varying amounts of hard ceramic material (WC) to a tough HEA matrix (CoCrFeNi) by arc melting under an argon atmosphere, including microstructural changes, and evaluation of the WC additions on mechanical properties. X-ray diffraction analysis of the HEA-WC composites showed the presence of both fcc and carbide phases. Scanning electron microscope investigations, including energy dispersive spectroscopy, reveal that chromium diffuses from the matrix and interacts with WC to form an alloyed carbide phase. The amount of alloyed carbide was found to increase with increasing amount of WC addition to the HEA matrix. Mechanical characterization revealed that hardness and yield strength of the HEA-WC composites increase with increasing amount of the carbide phase in the matrix. The hardness of HEA-20wt.% WC sample was found to be as high as 3.3 times (593 HV) the hardness of the base HEA (180 HV), while the yield strength increased from 278 MPa for the base HEA to 1098 MPa for the CoCrFeNi-20 wt.% WC composite. The investigated composites also showed excellent values of ductility (~ 50% strain for CoCrFeNi-10 wt% WC and ~ 20% strain for CoCrFeNi-20 wt% WC). It is therefore believed that ceramic-reinforced high entropy matrix composites have the potential to provide outstanding combinations of mechanical properties for demanding structural applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...